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ABSTRACT 
Most real life problems can be formulated into optimization problems. But, some of such 
problems are usually complex and as such very difficult to solve by standard optimization 
methods. Research has also shown that such problems can be transcribed as variational 
inequality problems which are easier to solve yet maintaining the optimality of the original 
problem. Thus, in this research, we took a theoretical survey of convex optimization and 
variational inequality problems. 
 
Key Words: 
1. Introduction 
A convex program is an optimization problem where we seek the minimum of a convex function 
over a convex set (Dantzig,1963). Among these, the most commonly used is the linear program 
(LP), an optimization problem with linear objective and linear inequality constraints: 

minimize c P

T
P x 

subject to aP

T
PRiR x <bRiR,          i  = 1, … L;         (1) 

where the optimization variable is the vector x, and aRiR, bRiR, and c are problem parameters. Dantzig 
introduced the simplex method in 1948 (Dantzig,1963) which led to the widespread use of linear 
programming. 
 

In recent years, convex optimization has become a computational tool of central importance in 
nearly all fields of study due to its ability to solve very large practical problems reliably and 
efficiently (Nemirovskii and Scheinberg, 1996).  
 

Convex optimization can be described as a fusion of three disciplines: optimization, convex 
analysis, and numerical computation. It has recently become a tool of central importance in 
engineering, enabling the solution of very large, practical engineering problems reliably and 
efficiently (Dantzig, 1963). In some sense, convex optimization is providing new indispensable 
computational tools today, which naturally extend our ability to solve problems such as least 
squares and linear programming to a much larger and richer class of problems (Sussmann and 
Willems, 1997). 
 
Our ability to solve these new types of problems comes from recent breakthroughs in algorithms 
for solving convex optimization problems, coupled with the dramatic improvements in 
computing power, both of which have happened only in the past decade or so. Today, new 
applications of convex optimization are constantly being reported from almost every area of 
engineering, including: control, signal processing, networks, circuit design, communication, 
information theory, computer science, operations research, economics, statistics, structural 
design e.t.c  (Gelfand and Fomin, 1963) 
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Convex functions appear in many important problems in pure and applied Mathematics. Many 
literatures on convex analysis and convex function are usually defined only on convex domains. 
Moreover, Convex functions are often extended to the whole linear space by setting the value to 
be +∞ out of the convex domain, so that the extended function is still convex. While such 
treatment is preferred in some applications, (e.g. Optimization, convex programming) and in 
some theories, it may not be the desirable thing to do if the problem is more analytic. The 
extension of convex functions has wide ranging applications in geometric analysis, non linear 
dynamics, quantum computing and Economics.  
 
Variational Inequalities, formulated, between the end of 60’ and the beginning of 70’ of previous 
century by the Italian Mathematician G. Stampacchia provide a very general framework for a 
wide range of mathematical problems. Moreover, they have shown to be important models in the 
study of equilibrium problems, in the engineering sciences (equilibrium problems in a traffic 
network) and in the economic sciences (oligopolistic market equilibrium problems). 
 

2. Purpose of the Study 
The goal of this research is to give a theoretical overview of the basic concepts of convex sets, 
convex functions, convex optimization problems, variational inequality problems and to show 
the relationship between convex optimization and variational inequality problems.  
 

3.  Review of Optimization Problem and Variational Inequality Problems 
While interior-point methods have been discussed for at least thirty years (see, e.g., Fiacco and 
McCormick, 1968), the current development was launched in 1984 by Karmarkar (Karmarkar, 
1984) with an algorithm for linear programming that was more efficient than the simplex 
method. A large body of literature now exists on interior-point methods for linear programming, 
and a number of books have been written (e.g., Wright (1997) and Vanderbei (1997). 
Numerous implementations of efficient interior-point LP solvers are now available [Czyzyk, 
Mehrotra and Write (1997), Vanderbei (1992), Zhang (1994)]. Of themselves, these 
developments did not change the traditional view that held nonlinear optimization problems to be 
fundamentally more difficult than linear ones. 
 
This would later be replaced with the understanding that the fundamental division in complexity 
lies in convex versus non-convex programming. Some ten years after Karmarkar presented his 
algorithm, Nesterov and Nemirovsky (1994) noted that interior-point methods can be extended to 
handle many nonlinear convex optimization problems. Interior-point methods for nonlinear 
convex optimization problems have many of the same characteristics of the methods for linear 
programming. They have polynomial-time worst case complexity, and are extremely efficient in 
practice. 
 
Current algorithms can solve problems with hundreds of variables and constraints in times 
measured in seconds, or at most a few minutes, on a personal computer. If problem structure, 
such as sparsity, is exploited, much larger problems can be handled. The course notes by Boyd 
and Vandenberghe (1997) give an accessible introduction to the field and describe a large 
number of applications. 
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A great amount of work has recently been done on some classes of nonlinear convex programs, 
both in terms of algorithms and applications. These include semi definite programming (SDP) 
Boyd and Vandenberghe (1996) and second-order cone programming (SOCP) Lobo, 
Vandenberghe, Boyd and Lebret (1998).  
Several developments in the field of convex optimization have stimulated new and various 
interest in the topic. These new method allow us to solve convex optimization problems, such as 
semi-definite programs and second order convex programs, almost as easily as linear programs. 
Boyd as well discovered that convex optimization problems beyond least –squares and linear 
programming problems are more prevalent in practice than was previously thought. Since 1990 
many applications have been discovered in area such as automatic control, system estimation and 
signal processing, electronic Circuit, finance, statistics, data analysis and modeling etc. Boyd 
interest was to develop the skills and background needed to recognized, formulate and solve 
convex optimization. 
 
Lagrange developed a powerful characterization of local optima of equality constrained 
optimization problem in terms of the behavior of the objective function 𝑓 and the constraint 
function 𝑔. At these points, he said that if 𝑓: 𝑘 ⊂ ℝ𝑛 ⟶ ℝ and 𝑔𝑖: ⟶ℝ𝑘 are 𝐶1 functions, 
𝑖 = 1, .  .  . ,𝑘 and suppose 𝑥∗ is local maximum or minimum of 𝑓 on the set  
𝑘 = 𝑈  ∩  {𝑥: 𝑔𝑖(𝑥) = 𝑘},𝑈 ⊂ ℝ𝑛 is open and if the rank  
𝑙�∇𝑔(𝑥∗)� = 0 then we can find a vector  
𝜆∗ = 𝜆1∗ , .  .  . , 𝜆𝑘∗ ∈ ℝ𝑘 such that ∇𝑓(𝑥∗) + ∑ 𝜆1∗  𝑔𝑖 (𝑥∗) = 0𝑘

𝑖=1  
 
Karush–Kuhn–Tucker was mostly interested in the optima of inequality constrained optimization 
problems. He discovery that Lagrange theorem can be extended to inequality-constrained 
problems.  Kuhn –Tucker extend the theorem of Lagrange to convexity, he added that if 𝑓 is 
concave 𝐶1 a function mapping 𝑢 into ℝ  open and convex for 𝑖 = 1,   .  .  . , 𝑙  and if ℎ𝑖:𝑢 ⟶ℝ is 
also concave 𝐶1 function and if there exists 𝑥 ∈ 𝑙 such that, ℎ𝑖(𝑥) ≥ 0, 𝑖 = 1, .  .  . 𝑙. then 𝑥∗ 
maximizes 𝑓 over 𝑘 = {𝑥 ∈ 𝑢:ℎ𝑖(𝑥) ≥ 0, 𝑖 = 1, .   .  . 𝑙} if and only if there is 𝜆 ∈ ℝ𝑘 such that 
Kuhn-Tucker first order conditions of the theorem of Kuhn-Tucker holds. Kuhn-Tucker first 
order conditions are both necessary and sufficient to identify optima of a convex inequality 
problem. 
 
Variational inequalities, formulated, between the end of 60’ and the beginning of 70’ of previous 
century by the Italian mathematician G. Stampacchia provide a very general framework for a 
wide range of mathematical problems among which, rather under general hypotheses, 
optimization ones. Moreover, they have shown to be important models in the study of 
equilibrium problems, in the engineering sciences (equilibrium problems in a traffic network) 
and in the economic sciences (oligopolistic market equilibrium problems). Such problems, in 
fact, play a crucial role in the theory of complex systems and for this reason, recently, have been 
presented many variational formulations of these problems.  
 
Since the appearance of the papers of Minty and ,Hartman and Stampacchia and Browder , the 
theory of monotone (nonlinear) operators in general and the variational inequality in particular 
have generated a tremendous interest amongst mathematicians. This is because of the wide 
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applicability of the variational inequality in nonlinear elliptic boundary value problems, obstacle 
problems, Complementarity problems, mathematical programming, mathematical economics and 
in many other areas.  
 
Kamaradian (1972) showed that the problem of Complementarity can be reduced to the 
variational inequality, while the relationship between mathematical programming and the 
variational inequality was shown by Mancino and Stampacchia (1972), between the variational 
inequality and convex functions by Rockafeller (1970) and Moreau (1966). 

 
4 Unconstrained optimization problems 
This is represented mathematically as  
  (𝑃)    𝑀𝑖𝑛      𝑓(𝑥)    
              s.t     𝑢 ∈ 𝑋, 
Where 𝑥 =  (𝑥1,⋯ , 𝑥𝑛) ∈ ℝ𝑛, 𝑓(𝑥):ℝ𝑛 ⟶ ℝ, and 𝑋 is an open set (usually 𝑋=ℝ𝑛). 
A necessary condition for local optimality is a statement of the form. “If 𝑥̅ is a local minimum of 
(𝑃), then 𝑥̅ must satisfy the optimality condition” such a condition helps us identify all 
candidates for local optima. 
Theorem 1: Suppose that 𝑓(𝑥) is differentiable at 𝑥̅. If there is a vector 𝑑 ∋ ∇𝑓(𝑥̅)𝑡𝑑 < 0, 
∀𝜆 > 0 and sufficiently small, 𝑓(𝑥̅ + 𝜆𝑑) < 𝑓(𝑥̅), and hence 𝑑 is a descent direction of 𝑓(𝑥) at 
𝑥̅. 
Proof  
We have 𝑓(𝑥̅ + 𝜆𝑑) = 𝑓(𝑥̅) + 𝜆∇𝑓(𝑥̅)𝑡𝑑 + 𝜆‖𝑑‖ ∝ (𝑥̅, 𝜆𝑑)       
Where ∝ (𝑥̅ + 𝜆𝑑) ⟶ 0 as 𝜆 ⟶ 0. rearranging  
𝑓(𝑥̅ + 𝜆𝑑) − 𝑓(𝑥̅)

𝜆
= ∇𝑓(𝑥̅)𝑡𝑑 + ‖𝑑‖ ∝ (𝑥̅, 𝜆𝑑) 

Since ∇𝑓(𝑥̅)𝑡𝑑 < 0 and ∝ (𝑥̅, 𝜆𝑑) ⟶ 0 as 𝜆 ⟶ 0, 
𝑓(𝑥̅ + 𝜆𝑑) − 𝑓(𝑥̅) < 0   ∀𝜆 > 0 sufficiently small. 
 
4.1 First and Second Order Necessary Conditions for Optimality 
Theorem 2: (1 P

st
P-order optimality condition) Let 𝑓:ℝ𝑛 ⟶ ℝ, be differentiable at a point 

𝑥̅ ∈ ℝ𝑛. If 𝑥̅ is local solution to the problem (𝑃), then ∇ 𝑓(𝑥̅) = 0  
Proof: 
From the definition of derivative we have that  
                  𝑓(𝑥) =  ∇𝑓(𝑥̅) + ∇𝑓(𝑥̅)𝑡(𝑥 − 𝑥̅) + 0 (‖𝑥 − 𝑥̅‖)   
Where 𝑙𝑖𝑚

𝑥 ⟶ 𝑥̅
0 (‖𝑥−𝑥̅‖)
‖𝑥−𝑥̅‖

= 0 let 𝑥 = 𝑥̅ − 𝑡∇𝑓(𝑥̅). 
Then, 
0 ≤ 𝑓�𝑥−𝑡∇𝑓(𝑥̅)�−𝑓(𝑥̅)

𝑡
= ‖∇𝑓(𝑥̅)‖+2  0 (𝑡‖∇ 𝑓(𝑥̅)‖)

𝑡
   

Taking the limit as 𝑡 ↓ 0 we obtain 0 ≤ −‖∇𝑓(𝑥̅)‖2 ≤ 0 
Hence ∇𝑓(𝑥̅) = 0 
 
Theorem 3:  (second-order optimality conditions)  
Let 𝑓:ℝ𝑛 ⟶ ℝ be twice differentiable at the point 𝑥̅ ∈ ℝ𝑛.  
(1)  (necessity) if 𝑥̅  is a local solution to the problem 𝑃, then 
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          ∇𝑓(𝑥̅) = 0 and 𝛻2𝑓(𝑥̅) is positive semi-definite.  
(2)  (Sufficiency) if ∇𝑓(𝑥̅) = 0 and 𝛻2𝑓(𝑥̅) is positive definite, then there is an ∝> 0 ∋ 𝑓(𝑥) ≥

𝑓(𝑥̅)+∝ ‖(𝑥 − 𝑥̅)‖2 ∀𝑥 near 𝑥̅. 
Proof (1) We make use of second-order Taylor series expansion 
 𝑓(𝑥) = 𝑓(𝑥̅) + ∇𝑓(𝑥̅)𝑇(𝑥 − 𝑥̅) + 1

2
𝑓(𝑥 − 𝑥̅)𝑇𝛻2𝑓(𝑥̅)(𝑥 − 𝑥̅) + 0(‖𝑥 − 𝑥̅‖2) …. (2) 

Given 𝑑 ∈ ℝ𝑛 and 𝑡 > 0 set = 𝑥̅ + 𝑡𝑑, plugging this into (2) we find that 0 ≤ 𝑓(𝑥+𝑡𝑑)−𝑓(𝑥̅)
𝑡2

=
1
2
𝑑𝑇𝛻2𝑓(𝑥̅)𝑑 + 0�𝑡2�

𝑡2
  

Since ∇𝑓(𝑥̅) = 0 by taking the limit as 𝑡 → 0 we get that 0 ≤ 𝑑𝑇𝛻2𝑓(𝑥̅)𝑑. 
Now since 𝑑 was chosen arbitrarily we have that 𝛻2𝑓(𝑥̅) is positive semi-definite. 

A sufficient condition for local optimality is a statement of the form: “if 𝑥̅  satisfies required 
condition, then 𝑥̅  is a local minimum of (𝑃). " Such a condition allows us to automatically 
declare that 𝑥̅  is indeed a local minimum. 
(2)  From (2) we have that  
         𝑓(𝑥)−𝑓(𝑥̅)

‖𝑥−𝑥̅‖2
= 1

2
(𝑥−𝑥̅)𝑇

‖𝑥−𝑥̅‖
𝛻2𝑓(𝑥̅) (𝑥−𝑥̅)

‖𝑥−𝑥̅‖
+ 0�‖𝑥−𝑥̅‖2�

‖𝑥−𝑥̅‖2
                          (3) 

If 𝜆 > 0 is the smallest eigenvalue of  𝛻2𝑓(𝑥̅), choose 𝜀 > 0 so that  
�0�‖𝑥−𝑥̅‖

2�
‖𝑥−𝑥̅‖2

� ≤ 𝜆
4
                    (4)           

Wherever  ‖𝑥 − 𝑥̅‖  < 𝜀. Then ∀ ‖𝑥 − 𝑥̅‖2 < 𝜀 we have from (3) and (4) that  𝑓(𝑥)−𝑓(𝑥̅)
‖𝑥−𝑥̅‖2

≥ 1
2
𝜆 +

0�‖𝑥−𝑥̅‖2�
‖𝑥−𝑥̅‖2

    ≥ 1
4
𝜆 

Consequently, if we set ∝ = 1
4
𝜆, then  

𝑓(𝑥) ≥ 𝑓(𝑥̅)+∝ ‖𝑥 − 𝑥̅‖2 
Wherever ‖𝑥 − 𝑥̅‖  < 𝜀 
The following result shows that the first-order condition for unconstrained optima (i.e, the 
condition that ∇ f (x) = 0) is both necessary and sufficient to identify global unconstrained 
maxima, when such maxima exist. 
 
Theorem 4    Let D ⊂RP

n
P be convex, and f: D →R  be a concave and differentiable function on 

D. Then, x is an unconstrained maximum of  f on D  if and only if  ∇ f (x) = 0 .  
Proof 
The reverse implication which requires the concavity of f is actually an immediate consequence 
of the gradient inequality which says, suppose x and y are any two points in D, by the concavity 
of f, we must have 
     f (y) -  f(x) ≤  ∇ f(x)(y-x). 
if ∇ f(x) = 0, the right-hand side of this equation is also zero, so the equation states precisely 
that  
                                 f(x) ≥  f(y).  
Since y ϵ D was arbitrary, x is a global maximum of f on D. 
 
4.2 Gradients and Hessians  
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Let 𝑓(𝑥):  X→ ℝ, where X ⊂ ℝ𝑛 is open.  
𝑓(𝑥) is differentiable at  𝑥̅ ∈ 𝑋, if ∃ a vector ∇𝑓(𝑥̅)  ∋ for each  𝑥 ∈ 𝑋, 
𝑓(𝑥) = 𝑓(𝑥̅) + ∇ 𝑓(𝑥 ̅ )𝑡(𝑥 − 𝑥̅) + ‖𝑥 − 𝑥̅‖ ∝ (𝑥̅, 𝑥 − 𝑥̅),   

and       lim ∝ (𝑥̅, 𝑦) = 0 , 𝑓(𝑥) is differentiable 𝑜𝑛 𝑋
   𝑦 → 0                                                                         

If  𝑓(𝑥) is differentiable ∀   𝑥̅ ∈ 𝑋. The gradient vector is the vector of partial derivatives.  

∇𝑓(𝑥̅) = �
𝜕𝑓(𝑥̅)
𝜕𝑥1

, … ,
𝜕𝑓(𝑥̅)
𝜕𝑥𝑛

� 

The directional derivative of 𝑓(𝑥) 𝑎𝑡  𝑥̅  in the direction 𝑑 is: 
𝐿𝑖𝑚
𝜆 → 0

𝑓(𝑥̅ + 𝜆𝑑) − 𝑓(𝑥̅)
𝜆

= ∇𝑓(𝑥̅)T𝑑 
The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥)  is twice differentiable at 𝑥̅ ∈ 𝑋 if ∃ a vector ∇𝑓(𝑥̅) and an 𝑛 × 𝑛 
symmetric matrix 𝐻(𝑥) ∋  for each 𝑥 ∈ 𝑋. 
 𝑓(𝑥) = 𝑓(𝑥̅) + ∇𝑓(𝑥̅)𝑡 (𝑥 − 𝑥̅) + 1

2
 (𝑥 − 𝑥̅)𝑡𝐻(𝑥)(𝑥 − 𝑥̅) + ‖𝑥 − 𝑥̅‖2(𝑥, 𝑥 − 𝑥̅)  

and 𝑙𝑖𝑚 
𝑦 ⟶ 0 (𝑥̅, 𝑦) = 0, 𝑓(𝑥) is twice differentiable on 𝑋 𝑖𝑓 𝑓(𝑥) is twice differentiable 

∀𝑥̅ ∈ 𝑋. 
The Hessian is the matrix of second partial derivatives: 
𝐻(𝑥̅)𝑖𝑗 = 𝜕2𝑓(𝑥̅)

𝜕𝑥𝑖𝜕𝑥𝑗
   

 
 4.3 Existence and Uniqueness Theorem  
The existence and uniqueness of solution to the general optimization problem is stated below. 
Theorem 5. (Weierstrass Theorem) 
Let 𝑘 ⊂ ℝ𝑛 be compact and nonempty and let 𝑓: 𝑘 ⟶ ℝ be a continuous function on 𝑘, then 

𝑓 has a global minimum in 𝑘, that is ∃ at least one point 𝑥∗ ⊂ 𝑘 such that 𝑓(𝑥∗) = 𝐼𝑛𝑓 𝑓(𝑥)
𝑥 ∈ 𝑘      

  

Proof:  Let (𝑥𝑛) be a minimizing sequence of 𝑓 in 𝑘, that is lim 𝑓(𝑥𝑛)
𝑛 ⟶ ∞

=  𝐼𝑛𝑓 𝑓(𝑥)
𝑛 ∈ 𝑘

   

Since 𝑘 is compact, it implies that 𝑘 is bounded and closed, and since (𝑥𝑛) is a sequence of 𝑓 in 
𝑘, (𝑥𝑛) is bounded, By Bolzano Weierstrass theorem, (𝑥𝑛) has a subsequence (𝑥𝑛𝑘) which 
converges to some point 𝑥∗ ∈ ℝ𝑛. Since 𝑘 is closed, 𝑥∗ ⊂ 𝑘. Using the fact that 𝑓 is continuous 
at  𝑥∗, it follows that 

 𝐿𝑖𝑚 𝑓(𝑥𝑛𝑘)
𝑘 ⟶ ∞

= 𝑓(𝑥∗) … … … … … … … … … … … … … … … … … … … … … … … . (5) 

Since 𝑓(𝑥𝑛𝑘) is a subsequence of 𝑓(𝑥𝑛); we have 

 𝐿𝑖𝑚 𝑓(𝑥𝑛)
𝑘 ⟶ ∞

= 𝐼𝑛𝑓
 𝑛 ∈ 𝑘

𝑓(𝑥∗), .       .          .                                                                   6  

From equation (5) and (6) and by the uniqueness of the limit, we have  𝑓(𝑥∗) = 𝐼𝑛𝑓 𝑓(𝑥) 
𝑥 ∈ 𝑘

      

Therefore 𝑥∗ is a global minimum of 𝑓 in 𝑘. 
In a case where 𝑘 is closed but not necessarily bounded and 𝑓 is coercive, we still conclude that 
solution exist, we discuss the proposition below: 
Proposition (𝟏) Let 𝑘 be a nonempty closed subset of ℝ𝑛. If 𝑓 is coercive, then;  
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(a) The function 𝑓 is bounded below on k. 
(b) Any minimizing sequence of 𝑓 in 𝑘 is bounded.  

Proof (𝑎) 
Suppose that 𝑓 is not bounded below on 𝑘. Then for all 𝑛 ∈ ℕ there exist 𝑥𝑛 ∈ 𝑘 such that 
𝑓(𝑥𝑛) < −𝑛, we get a sequence (𝑥𝑛) in 𝑘 satisfying  
𝑓(𝑥𝑛)  < −𝑛, ∀𝑛 ∈ ℕ   .  .   .       … … … … … … … … … … … . (7)          
Because f is coercive, this sequence must be bounded otherwise it has a subsequence (𝑥𝑛𝑘) such 
that  
𝑙𝑖𝑚 ‖𝑥𝑛𝑘‖ = +∞
𝑘 ⟶ ∞                  

     

From (6),  It follows that  
𝑙𝑖𝑚 (𝑥𝑛𝑘) = −∞
𝑘 ⟶ ∞                  

   
By Uniqueness of limit  
𝑙𝑖𝑚 (𝑥𝑛𝑘) = −∞
𝑘 ⟶ ∞                      

  

Which is a contradiction, and so 𝑥𝑛 is bounded by Bolzano-Weierstrass theorem, there exists a 
subsequence(𝑥𝑛𝑘) of (𝑥𝑛) that converges to 𝑥∗ ⊂ 𝑘. 
Using continuity of 𝑓 at 𝑥∗, we have 
𝑙𝑖𝑚 𝑓(𝑥𝑛𝑘) =  𝑓(𝑥∗)
𝑘 ⟶ ∞                      

   

From (6) we get 𝑙𝑖𝑚 𝑓(𝑥𝑛𝑘) =  −∞
𝑘 ⟶ ∞                      

 

Therefore, by uniqueness of limit, it follows that  𝑓(𝑥∗) = −∞. 
Which is a contradiction that  𝑙𝑖𝑚 𝑓(𝑥𝑛𝑘) =  +∞,

𝑘 ⟶ ∞                      
 

So 𝑓 is bounded below on 𝑘. 
Proof (𝒃) let (𝑥𝑛) be a minimizing sequence of 𝑓 in 𝑘, that is  
lim 𝑓(𝑥𝑛)
𝑛 ⟶ ∞

= 𝐼𝑛𝑓  𝑓(𝑥)
𝑥 ∈ 𝑘        

 .     .    .                                                                               (8) 

We want to show that (𝑥𝑛) is bounded. By contradiction, assume it is not bounded, then there 

exist a subsequence (𝑥𝑛𝑘) of (𝑥𝑛) such that  𝑙𝑖𝑚 ‖𝑥𝑛𝑘‖ = +∞
𝑘 ⟶ ∞                  

   

Since 𝑓 is coercive, we have  
𝑙𝑖𝑚 𝑓(𝑥𝑛𝑘) =  +∞
𝑘 ⟶ ∞                      

… … … … … … … ….                                                                     (9) 

Using (3.7) we have  
𝑙𝑖𝑚𝑓(𝑥𝑛𝑘) =
𝑘 ⟹ ∞

inf𝑓(𝑥)
𝑥 ∈ 𝑘

 

⟹ 𝐼𝑛𝑓 𝑓(𝑥) =  +∞ 
Which is a contradiction that 𝑓 is bounded below on 𝑘. 
Theorem 6: Let 𝑘 be a non-empty closed subset of ℝ𝑛 (not necessarily bounded). Assume that 𝑓 
is continuous on some open set containing 𝑘. Then 𝑓 has a global minimum on 𝑘, that is there 

exists at least one point 𝑥∗ ∈ 𝑘 such that 𝑓(𝑥∗) = min 𝑓(𝑥∗)
𝑥 ∈ 𝑘
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Proof: Let (𝑥𝑛) be a minimizing sequence of 𝑓 in 𝑘. By proposition (1), (𝑥𝑛) is bounded, and by 
Bolzano Weierstrass Theorem, (𝑥𝑛) has a subsequence (𝑥𝑛𝑘) which converge to some points 
𝑥∗ ∈ 𝑘, we have  
min 𝑓(𝑥𝑛𝑘) =
𝑘 ⟶∞

  𝑓(𝑥∗)                                                                                             (10) 

More so, since 𝑓(𝑥𝑛𝑘) is a subsequence of 𝑓(𝑥𝑛), we have 
lim 𝑓(𝑥𝑛𝑘)
𝑘 ⟶ ∞   

= 𝑖𝑛𝑓 (𝑥)
𝑥 ∈ 𝑘  

                                                                               (11) 

Using equation (10) and (11) and by the Uniqueness of the limit, we have 𝑓(𝑥∗) = 𝑖𝑛𝑓 𝑓(𝑥). 
 
Theorem 4.1: Suppose 𝒇:ℝ → ℝ is 𝐶′. Then 𝑓 is convex if and only if  𝑓(𝑦) + (𝑥 − 𝑦)𝑓′(𝑦) ≤
𝑓(𝑥)       ∀ 𝑥,𝑦 ∈ ℝ.  𝐹𝑜𝑟 strict convexity replace ≤ 𝑏𝑦 <   𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟  𝑥 ≠ 𝑦. 
Proof: Suppose 𝑓(𝑦) + (𝑥 − 𝑦)𝑓′(𝑦) ≤ 𝑓(𝑥)      ∀𝑥,𝑦 ∈ ℝ. we have to show that this implies                                      
  𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)          ∀𝜆 ∈ [0,1] 
And 𝑥,𝑦 ∈ ℝ. to this end choose any two points 𝑥, 𝑦   ∈ ℝ  𝑎𝑛𝑑 𝑎𝑛𝑦      ∀𝜆 ∈ [0,1].  
We write  𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦. From the initial assumption it follows that  

𝑓(𝑧) + (𝑥 − 𝑧)𝑓′(𝑧) ≤ 𝑓(𝑥)   .   .   .         (12)  

𝑓(𝑧) + (𝑦 − 𝑧)𝑓′(𝑧)    ≤ 𝑓(𝑦)     .    .   .     (13) 

Multiplying (12) by 𝜆 and (13)  by (1 − 𝜆) and adding gives 

 𝑓(𝑧) + 𝑓′(𝑧)[𝜆𝑥 + (1 − 𝜆)𝑦 − 𝑧] ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦). 

As 𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦   𝑡ℎ𝑒𝑛 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) 

Since this is true ∀𝜆 ∈ [0,1] 𝑎𝑛𝑑  ∀𝑥, 𝑦 ∈ ℝ  then 𝑓 is convex. 

⟸ Now suppose 𝑓 is convex. We need to show that this implies 𝑓(𝑦) + (𝑥 − 𝑦)𝑓′(𝑦) ≤
𝑓(𝑥)       ∀ 𝑥,𝑦 ∈ ℝ. if 𝑥 = 𝑦 the implication follows immediately, so suppose this is not the case. 
By convexity     

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)   ∀𝜆 ∈ [0,1]    𝑎𝑛𝑑  ∀𝑥, 𝑦 ∈ ℝ or rearranging terms; 

𝑓[𝑦 + 𝜆(𝑥 − 𝑦)] − 𝑓(𝑦) ≤ 𝜆�𝑓(𝑥) − 𝑓(𝑦)�  ∀𝜆 ∈ [0,1] 𝑎𝑛𝑑   ∀𝑥, 𝑦 ∈ ℝ. Assuming 𝜆 differ 
from 0 we can get  

(𝑥 − 𝑦)
𝑓�𝑦 + 𝜆(𝑥 − 𝑦)� − 𝑓(𝑦)

𝜆(𝑥 − 𝑦) ≤ 𝑓(𝑥) − 𝑓(𝑦) 

∀𝜆 ∈ [0,1]   𝑎𝑛𝑑 ∀𝑥,𝑦 ∈ ℝ. substituting 𝜆(𝑥 − 𝑦) 𝑏𝑦 Δ𝑥 

(𝑥 − 𝑦)
𝑓[𝑦 + Δ𝑥] − 𝑓(𝑦)

Δ𝑥
≤ 𝑓(𝑥) − 𝑓(𝑦) 
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Taking the limit when 𝜆 → 0  

 (𝑥 − 𝑦)𝑓(𝑦) ≤ 𝑓(𝑥) − 𝑓(𝑦) or 𝑓(𝑦) + (𝑥 − 𝑦)𝑓(𝑦) ≤ 0    ∀𝑥, 𝑦 ∈ ℝ. 
 

Theorem 4.2: Suppose 𝑓:ℝ → ℝ is 𝐶2. Then 𝑓 is convex if and only if 𝑓′′(𝑥) ≥ 0     ∀𝑥 ∈ ℝ. 
moreover, if 𝑓′′(𝑥) > 0      ∀𝑥 ∈ ℝ, then, 𝑓 is strictly  convex.  

Concave function can be defined in a similar way. In particular 𝑓:ℝ → ℝ 𝑖𝑠 𝑎 concave function 
if and only if −𝑓:ℝ → ℝ 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 

There is an alternative characterization of concave and convex functions that does not require 
differentiability. It is in terms of the convexity of certain sets associated with the graphs of the 
corresponding functions. For  𝑓:ℝ → ℝ the epigraph of 𝑓, 𝐸𝐺𝑓 is  

𝐸𝐺𝑓 = {(𝑦, 𝑥) ∈ ℝ2: 𝑦 ≥ 𝑓(𝑥)    for some  𝑥 ∈ ℝ }  
Visually the epigraph of for some  𝑓 is the set of point in ℝ2 which lies above the graph. 
The next theorem characterized convex functions through their epigraph. 
 
Theorem 4.3: A function for some   𝑓:ℝ → ℝ  is convex  if and only if  it’s epigraph is a convex 
set. 

Proof: suppose 𝐸𝐺𝑓 is a convex set and choose and 𝑥, 𝑥′ ∈ ℝ, let 𝑓(𝑥) = 𝑦 and 𝑓(𝑥′) = 𝑦′. 
Then (𝑥, 𝑦) ∈ 𝐸𝐺𝑓   𝑎𝑛𝑑   (𝑥′,𝑦′) ∈ 𝐸𝐺𝑓. Since 𝐸𝐺𝑓 is a convex set, we have   

𝜆𝑥 + (1 − 𝜆)𝑥′, 𝜆𝑦 + (1 − 𝜆)𝑦′    ∈ 𝐸𝐺𝑓  ∀𝜆 ∈ [0,1].   

That is   𝑓(𝜆𝑥 + (1 − 𝜆)𝑥′) ≤ 𝜆𝑦 + (1 − 𝜆)𝑦′)    ∀𝜆 ∈ [0,1].  

Since this is true for all 𝑥, 𝑥′ ∈ ℝ then 𝑓 is convex. 

⟸ Suppose 𝑓 is convex and let (𝑥,𝑦) ∈ 𝐸𝐺𝑓   𝑎𝑛(𝑥′, 𝑦′) ∈ 𝐸𝐺𝑓; that is  𝑓(𝑥) ≥ 𝑦 𝑎𝑛𝑑 𝑓(𝑥′) =
𝑦′. Multiplying the first inequality by 𝜆, the second one by (1 − 𝜆),𝑎𝑑𝑑𝑖𝑛𝑔  

𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑥′) ≤ 𝜆𝑦 + (1 − 𝜆)𝑦′    ∀𝜆 ∈ [0,1].But since 𝑓 is convex  𝑓(𝜆𝑥 +
(1 − 𝜆)𝑥′) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑥′)         ∀𝜆 ∈ [0,1].  

Hence  𝑓(𝜆𝑥 + (1 − 𝜆)𝑥′) ≤ 𝜆𝑦 + (1 − 𝜆)𝑦′    ∀𝜆 ∈ [0,1]. 

Then [𝜆𝑥 + (1 − 𝜆)𝑥′, 𝜆𝑦 + (1 − 𝜆)𝑦′] ∈ 𝐸𝐺𝑓 , ∀𝜆 ∈ [0,1]. 

In similar way, the convexity of a function can characterized through its epigraph. 

Theorem 4.4: Let  𝑓:ℝ𝑛 → ℝ 𝑏𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 convex. If 𝑓 ℎ𝑎𝑠 𝑎 global minimize, then it is unique. 
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Proof: Let 𝑥1𝑎𝑛𝑑 𝑥2 be distinct global minimizers of 𝑓. Then, for 𝜆 ∈ (0,1),  𝑓�(1 − 𝜆)𝑥1 +
𝜆𝑥2� < (1 − 𝜆)𝑓(𝑥′� ) + 𝜆𝑓(𝑥2) = 𝑓(𝑥1) which contradicts the assumption that 𝑥′  is a global 
minimizer. 

Proposition 4.6: For a function 𝑓: 𝐼 → ℝ on an interval 𝐼 ⊂ ℝ, convexity is equivalent to the 
properties that 𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
≤ 𝑓(𝑧)−𝑓(𝑥)

𝑧−𝑥
 whenever  𝑦 < 𝑥 < 𝑧   .   .   .   (14) 

However, (14) yields the well known fact that convex functions are every where left and right 
differentiable. Indeed, the left hand side of (14) equals 𝑆(𝑥, 𝑦) hence is an increasing function of 
𝑦;𝑎𝑛𝑑 𝑠𝑖𝑛𝑐𝑒 𝑖𝑡 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 from above from the right-hand side of (14) its supremum is 
necessarily a limit for 𝑦 → 𝑥−.  By definition this is the left derivative    
𝑓−′(𝑥) 𝑜𝑓 𝑓 𝑎𝑡 𝑥,𝑎𝑛𝑑 𝑓𝑜𝑟 𝑧 > 𝑥 

It fulfils 𝑓−′(𝑥) ≤ 𝑓(𝑧)−𝑓(𝑥)
𝑧−𝑥

      .   .   .                (15) 

Repeating the argument, it follows from this inequality that the right-hand side has 
(𝑖𝑡𝑠 𝑖𝑛𝑓𝑖𝑚𝑢𝑚 𝑎𝑠 ) a limit 𝑓+′(𝑥) for 𝑧 → 𝑥+and that 𝑓−′(𝑥) ≤ 𝑓+′(𝑥)    .   .   .       (16) 

This completes the prove. 

Proposition 4.7: A convex function 𝑓: 𝐼 → ℝ on an interval 𝐼 ⊂ ℝ is differentiable both from the 
left and right at every interior point 𝑥 𝑖𝑛 𝐼 and (16) holds. 

As an addendum to this proposition, it moreover follows from the proof of the existence of the 
one-sided derivatives that 

𝑓(𝑧) ≥ 𝑓(𝑥) + 𝑓+′(𝑥)(𝑧 − 𝑥)      ∀ 𝑧 ≥ 𝑥 ∈ 𝐼      .     .    . (17) 

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓+′(𝑥)(𝑦 − 𝑥)      ∀ 𝑦 ≥ 𝑥 ∈ 𝐼      .     .    . (18) 

Moreover, since  �𝑓(𝑧)−𝑓(𝑥)�
(𝑧−𝑥)

 𝑒𝑞𝑢𝑎𝑙𝑠𝑓+′(𝑥) + 𝑜(1) 𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓𝑜𝑟 𝑓−′(𝑦), 

𝑖𝑡 ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑦 ≤ 𝑥 ≤ 𝑧   such that  

𝑓(𝑧) ≥ 𝑓(𝑥) + 𝑓+′(𝑥)(𝑧 − 𝑥) + 𝑜(𝑧 − 𝑥)   ∀ 𝑧 ≥ 𝑥 ∈ 𝐼      .     .    . (19) 

        𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑓+′(𝑥)(𝑦 − 𝑥)      ∀ 𝑦 ≥ 𝑥 ∈ 𝐼      .     .                       . (20)  

Therefore the graph of 𝑓 has left and right half-tangents 𝑇+
−

 (𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑖𝑛𝑛𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 𝑥), namely 

the graph of 𝑦 ⟼ 𝑓(𝑥) + 𝑓+
−

′(𝑥)(𝑦 − 𝑥) for 

𝑦<
>𝑥   .   .   .   … … … … … … … … … … … … … … … … … … … … … … … . (21) 
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The meaning of (4.5) − (4.6) is that the graph of  𝑓 lies entirely above   𝑇−𝑎𝑛𝑑 𝑇+. To combine 
these facts, it follows by multiplying (2.5) 𝑏𝑦 𝑦 − 𝑥 ≥ 0 𝑎𝑛𝑑 𝑏𝑦 𝑦 − 𝑥 < 0 that both 𝑎 = 𝑓+′(𝑥) 
and 𝑓−′(𝑥) fulfils that 𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑎(𝑦 − 𝑥) for every 𝑦 ∈ 𝐼         (22) 

Because of the inequality here, every 𝑎 ∈ ℝ  with this property is called a sub-gradient of 
𝑓 𝑎𝑡 𝑥. Whenever a function 𝑓 has a sub-gradient at 𝑥 (𝑡ℎ𝑎𝑡 𝑖𝑠 𝑓𝑢𝑙𝑓𝑖𝑙𝑠 (22)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎), then 𝑓 
is called sub-differentiable at 𝑥; the above shows that convex functions are always sub-
differentiable in the interior of their domain. 

The set of sub-gradients of  𝑓 𝑎𝑡 𝑥 is usually denoted by 𝜕𝑓(𝑥); it is called the sub-differential of 
𝑓 𝑎𝑡 𝑥. It is straight forward to show that the sub-differential, as a subset  𝜕𝑓(𝑥) ⊂ ℝ, is always 
non-empty (𝑓𝑜𝑟 𝑛 = 1), 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝑐𝑜𝑛𝑣𝑒𝑥; 𝑖𝑛 𝑓𝑎𝑐𝑡                 

𝜕𝑓(𝑥) = [𝑓−′(𝑥),𝑓+′(𝑥)]      .     .     .          (23) 

Consequently 𝜕𝑓(𝑥) = 𝑓′(𝑥)  at each point 𝑥 is differentiable on 𝑓. 

As an appetizing example, consider 𝑓(𝑥) = |𝑥| 𝑓𝑜𝑟 𝑥 ∈ ℝ. At 𝑥0, the sub-differential is simply 
determine from (23) as     

             𝜕𝑓(𝑥0) = [−1,1]        .      .     .        (24) 
Although 𝑓 is not differentiable at 𝑥0 this function 𝑓 has a minimum (as it is convex) at 𝑥0 = 0 
precisely because 0 ∈ [−1,1]. 
 
5.1 Variational Inequality Theory 

Variational inequality theory provides us with a tool for formulating a variety of 
equilibrium problems; qualitatively analyzing the problems in terms of existence and uniqueness 
of solutions, stability and sensitivity analysis, and providing us with algorithms with 
accompanying convergence analysis for computational purposes. 

It contains, as special cases, such well-known problems in mathematical programming as: 
systems of nonlinear equations, optimization problems, Complementarity problems, and is also 
related to fixed point problems. 
5.2 Stampacchia and Minty Scalar Variational Inequalities 

We introduce Stampacchia and Minty variational inequalities in finite dimensional 
spaces. 
Definition 5.1: Let K be a nonempty subset of RP

n
P and let F be a function from RP

n
P to RP

n
P. A 

Stampacchia variational inequality (for short SV I(F,K)) is the problem to find an x P

*
P ∈ K such 

that:  
          SV I (F,K)       < F(x P

*
P), y − xP

*
P > ≥ 0        ;∀ y ∈ K    (25) 

where < ・ , ・ > denotes the inner product in RP

n
P. 

The problem was first introduced and studied by Stampacchia in 1964; subsequently, 
however, many other papers have appeared dealing with theoretical aspects and with applications 
of this problem .The vector xP

*
P, solution of SV I (F,K), is called Stampacchia equilibrium point of 

the map F on K. 
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We now introduce some equivalent formulations of SV I (F,K) in the case in which the 
domain is an open set or a convex and closed set. If the domain K is an open set, then the 
solution of SVI(F,K) is equivalent to that of a system of equations, as shows the following result: 
Proposition 5.1: Let K ⊆ RP

n
P be an open set and let be F : K → RP

n
P. The vector  xP

*
P∈ K is a solution 

of SV I (F,K) if and only if xP

*
P solves the system of equation F (xP

*
P) = 0. 

Proof: If F(x P

*
P) = 0, then SV I (F,K) holds with equality 

            < F(x P

*
P), x− x P

*
P > = 0                 ∀  x ∈ K 

Conversely if x P

*
P is a solution of SV I(F,K) and K is an open set, exists δ > 0 such that β(xP

*
P, δ) ⊂ 

K and so, by supposition, 
       < F(xP

*
P), x − xP

* 
P>≥ 0                                     ∀  x ∈ β (xP

*
P, δ)  

But ∀  x ∈ β(xP

*
P, δ) also (2 x P

*
P − x) ∈ β(x P

*
P, δ) and then 

 < F(xP

*
P), 2 xP

*
P − x − xP

*
P > = < F(xP

*
P), xP

*
P −x > ≥ 0        ∀  x ∈ β (xP

*
P, δ) 

Therefore < F(x P

*
P), x− xP

*
P >= 0                            ∀  x ∈ β (xP

*
P, δ)  

and that is equivalent to condition xP

*
P solves F(xP

*
P) = 0. 

Many classical economic equilibrium problems have been formulated as systems of 
equations, since market clearing conditions necessarily equate the total supply with the total 
demand. Note that systems of equations, however, preclude the introduction of inequalities, 
which may be needed, for example, in the case of non negativity assumptions on certain 
variables such as price. If, instead, K is a convex and closed set, an equivalent geometric 
formulation of SV I (F,K) can be given introducing the concepts of normal cone and generalized 
equation. 
Definition 5.2: If C ⊆ RP

n
P is a convex and closed set, the normal cone to at a point xP

*
P ∈ C is: 

NRCR (xP

*
P) = {x ∈ RP

n
P : < x, y − x P

*
P> ≤ 0  ∀  y ∈ C} 

It is easily seen that the normal cone is closed and convex. Then, if K is convex, xP

*
P ∈ K is a 

solution of SV I (F,K) if and only if: 
                                  −F(xP

*
P) ∈ NRKR(xP

*
P), 

 that is, if and only if 0∈ F (xP

*
P) + NRKR (xP

*
P) and so SVI (F,K) is equivalent to a generalized 

equation. 
An alternative formulation of the Stampacchia variational inequality (equivalent only 

under monotonicity and continuity hypotheses) has been proposed by G.J. Minty. The variational 
inequality which he formulated is known as Minty variational inequality. 
Definition 5.3 Let K be a nonempty subset of RP

n
P and let F be a function from K to RP

n
P. A Minty 

variational inequality (for short MVI(F,K)) is the following problem: to find an  x P

*
P∈ K such that: 

                     < F(y), xP

*
P −y > ≤ 0                           ∀  y ∈ K 

Any solution of MVI(F,K)is called a Minty equilibrium point of the map F over K.  
It is important to underline that, while in MVI(F, K) is considered the value assumed by F in 
every y ∈ K, in SVI(F, K) the function F is estimated only in the given point  xP

*
P∈ K. 

A well-known Lemma, formulated by Minty in 1967, states the equivalence of the two 
alternative formulations (the one presented by Stampacchia and the one introduced by Minty) 
under continuity and monotonicity assumptions of involved function. In other words Minty’s 
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lemma gives a complete characterization of the solutions of MVI(F,K) in terms of the solution of 
SVI(F,K), when the set K is convex and the operator F is continuous and monotone. 
Minty’s Lemma: Let F : K → RP

n
P with K ⊆ RP

n
P. 

i) If F is continuous on K and K is convex, then every xP

*
P∈ K which 

solves MVI (F,K) is also a solution of SVI (F,K) . 
ii) If, instead, F is monotone on the convex set K, that is if 
              < F(x) − F (y), x −y >≥ 0                                ∀ x, y ∈ K 
then every xP

*
P∈ K which solves SVI (F,K) is also a solution of MVI(F,K). 

Remark 5.1: It can be observed that for the implication MVI ⇒ SVI only the convexity of K and 
the continuity of F are used, while for the reverse implication only the monotonicity of F is 
exploited. Such hypothesis, contained in the point ii), can be weakened with the concept of 
pseudomonotonicity; in other words the implication 
      SVI ⇒ MVI is still true if F it is pseudomonotone, i.e.: 
            < F(x), x −y > ≤ 0 ⇒  < F(y), x −y > ≤ 0                ∀ x, y ∈ K 
One of the crucial problems in variational inequalities theory, on which is focused an important 
part of research, is the existence of a solution. Many classical results ensure that S, the solution 
set of SVI(F,K), is a nonempty set. The following theorem by Hartman and Stampacchia 
requires a convex and compact set K and a continuous function F. 
Theorem 5.2: If K is a nonempty convex and compact subset of RP

n 
and F : K → RP

n
P is a continuous function, there exists an xR0R∈ K solution of SVI (F,K) , i.e. S ≠ ∅. 

In general, the variational inequality problem SVI (F, K) can have more than one solution. 
If instead F is strictly monotone, then the problem SVI (F, K) can have at most one solution. 
Theorem 5.3: If K is a nonempty convex and compact subset of RP

n
P and F : K → RP

n
P is strictly 

monotone on K, then the problem SVI (F,K) has at most one solution. 
The hypotheses of continuity of F and of compactness of K do not ensure, instead, the 

existence of a solution for MVI (F, K); they don’t ensure, that is, that M, the solution set of MVI 
(F, K), is a nonempty set.  
5.3 Relations Between SVI, MVI and Extremal Problems 

It is interesting the study of the relations between variational inequalities and 
optimization problems. Variational inequalities are, in fact, considered as related to a scalar 
optimization problem in which the objective function is a primitive of the operator involved in 
the inequality itself. In other words, definitions 5.1 and 5.3 can be put in relationship with 
problems of the type: 
                P (f,K)        �

Kx
xf

∈
)(min  

where K ⊆ RP

n
P and f : RP

n
P → R. 

We recall that a point xP

*
P ∈ K is a solution of P (f,K) if: 

                          f (x) − f (xP

*
P) ≥ 0                               ∀  x ∈ K 

while a point xP

*
P ∈ K is a strong or strict solution of P (f,K) if: 

                         f (x) − f (x P

*
P) > 0                          ∀  x ∈ K\ { xP

*
P} 

The connections between minimum problems and the variational inequalities SV I (F,K) 
and MV I (F,K) have been widely studied in the case in which K is a convex set and the objective 
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function f :RP

n
P → R, defined and differentiable on a open set containing K, is a primitive of F, that 

is /f (x) = F(x). In other words, the easiest way to relate the variational inequalities of 
Stampacchia and Minty to minimization problems is to consider variational inequalities of 
differential type. It is possible, indeed, to consider the following variational inequalities: 
- To find a point xP

*
P ∈ K such that: 

                           < f∇ (x P

*
P) , y − xP

*
P > ≥ 0                       ∀  y ∈ K 

- To find a point xP

*
P ∈ K such that: 

                           < f∇  (y) , x P

*
P - y> ≥ 0                       ∀ y ∈ K 

Such problems are denoted, respectively with: 
SV I ( f∇ ,K) and MV I ( f∇ ,K). 

In the scalar case several results which state relations between solutions of a Stampacchia 
or Minty variational inequality of differential type and the underlying minimization problem are 
known. We recall, briefly, that if xP

*
P ∈ K ⊆ RP

n
P, with K convex and nonempty, is a solution of the 

primitive minimization problem: 
                P (f, K)        �

Kx
xf

∈
)(min  

for some function f : RP

n
P → R, differentiable on an open set containing the convex set K, then xP

*
P 

solves SV I ( f∇ ,K), as stated by the following result: 
Proposition 5.3 :Let K be a convex subset of RP

n
P and let f :RP

n
P →R be differentiable on an open set 

containing K. 
i) If x P

*
P∈ K is a solution of P (f,K), then x P

*
P  solves SV I ( f∇ ,K) . 

ii) If f is convex and xP

*
P∈ K solves SV I ( f∇ ,K), then xP

*
P  is a solution of 

P (f, K) . 
In other words if F(x) is the gradient of the differentiable function f : RP

n
P →R and if K is 

convex , then SVI ( f∇ ,K) is a necessary optimality condition for the minimization of the 
function f over the set K, condition which becomes also sufficient if f is convex. 

If, instead, xP

*
P∈ K is a solution of MV I ( f∇ ,K) then x P

*
P  is also solution of P (f, K). More 

precisely, MV I ( f∇ ,K) is a sufficient optimality condition which becomes necessary if f is 
convex. 
Proposition 5.4: Let K be a convex subset of RP

n
P and let f : RP

n
P → R be differentiable on a open set 

containing K. 
i) If x P

*
P ∈ K is a solution of MV I ( f∇ ,K), then xP

*
P is a solution of P (f, K) . 

ii) If f is convex and xP

* 
Pis a solution of P (f,K), then x P

* 
Psolves MVI( f∇ ,K). 

Remark 5.2: If, in point i) of Proposition 5.4, we suppose that xP

*
P is a “strict solution” of MV I (

f∇ ,K) ,i.e.: 

                            < f∇ (y) , y− xP

*
P> >0                   ∀ y ∈K y= xP

* 

 then it is possible to prove that xP

*
P is the unique solution of P (f,K). 
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Remark 5.3: In both propositions the convexity of f is necessary to prove only one of the 
implications. Such hypothesis can be weakened with the pseudo-convexity. 

The result of the proposition 5.4 leads to some deeper relationships between the solutions 
of MVI ( f∇ ,K) and the corresponding primitive minimization problem. It seems that an 

equilibrium modeled through a MV I ( f∇ ,K) is more regular that one modeled through a SV I (
f∇ ,K). This conclusion leads to argue that if MVI( f∇ ,K) admits a solution and the operator F 

admits a primitive f( f∇ = F),then f has some regularity property. 
5.4 The General Variational Inequality Problem 
The finite - dimensional variational inequality problem, VI( F ,K), is to determine a vector 

nRKx ⊂∈* , such that 
KxxxxF T ∈∀≥−     ,0).()( **  

or, equivalently, 
KxxxxF T ∈∀≥−     ,0)(,)( **     (26)   

where F  is a given continuous function from K to RP

n
P, K is a given closed convex set, and  

denotes .,. the inner product in n dimensional Euclidean space. 

In geometric terms, the variational inequality (26) states that TxF )( *  is “orthogonal” to 
the feasible set K at the point xP

*
P. This formulation, as shall be demonstrated, is particularly 

convenient because it allows for a unified treatment of equilibrium problems and optimization 
problems. 

Indeed, many mathematical problems can be formulated as variational inequality 
problems, and several examples applicable to optimization problems. 
 
 
 
Theorem 5.4 
Let K = RP

n
P and let F : RP

n 
P→  RP

n
P be a given function. A vector x solves VI( F , RP

n
P) if and only if 

F (xP

*
P) = 0. 

Proof:  
If F (x P

*
P) = 0, then inequality (1.4) holds with equality.  

Conversely, if x P

*
P satisfies (1.4), let x = x P

*
P− F (x P

*
P), which implies that 

0or0 2 ≥≥− F(x)     -,        ))F(x.()F(x *T*
                (27)                              

and, therefore, F (xP

*
P) = 0.  

The subsequent two theorems identify the relationship between an optimization problem and a 
variational inequality problem. 
 
Theorem 5.5 
Let xP

*
P be a solution to the optimization problem: 

Minimize f(x)          (28)  
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subject to: x ∈  K, 
where f is continuously differentiable and K is closed and convex. Then x P

*
P is a solution of the 

variational inequality problem: 

 ,0).()( ** ≥−∇ xxxf T
   Kx∈∀                (29) 

Proof: Let f(t) =f (xP

*
P +t(x – x P

*
P)), for t ∈  [0, 1]. Since f(t) achieves its minimum at  

t = 0,  ).()()0(0 **/ xxxff T −∇=≤ , that is, xP

*
P is a solution of  (28)      

Theorem 5.5 
If φ (x) is a convex function and x P

*
P is a solution to VI( F∇  , K), then x P

*
P is a solution to the 

optimization problem (5.3). 
Proof: Since f(x) is convex,  

f(x)> f (xP

*
P) + f∇ (xP

*
P) P

T
P .(x – xP

*
P),    Kx∈∀     (30) 

But f∇ (xP

*
P)P

T
P .(x – xP

*
P) > 0, since xP

*
P is a solution to VI( F∇ , K). Therefore, from (30) one 

concludes that that is, xP

*
P is a minimum point of the mathematical programming problem (28).    

If the feasible set K = RP

n
P, then the unconstrained optimization problem is also a variational 

inequality problem. 
 
On the other hand, in the case where a certain symmetry condition holds, the variational 
inequality problem can be reformulated as an optimization problem. In other words, in the case 
that the variational inequality formulation of the equilibrium conditions underlying a specific 
problem is characterized by a function with a symmetric Jacobian, then the solution of the 
equilibrium conditions and the solution of a particular optimization problem are one and the 
same.  
We first introduce the following definition and then fix this relationship in a theorem. 
 
Theorem 5.6 
Assume that )(xF  is continuously differentiable on K and that the Jacobian matrix  





















∂
∂

∂
∂

∂
∂

∂
∂

=∇

n

nn

n

x
F

x
F

x
F

x
F

xF







1

1

1

1

)(  

is symmetric and positive semidefinite. Then there is a real-valued convex function
1: RKf   satisfying   )()( xFxf =∇  

with x P

*
P the solution of VI(F,K) also being the solution of the mathematical programming 

problem: 
Minimize f(x) 
subject to: .Kx∈      (31) 

Proof: Under the symmetry assumption it follows from Green's Theorem that 
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f(x) = ∫ dxxF T)(       (32) 

where ∫ is a line integral. The conclusion follows since if f(x) is a convex function and x P

*
P is a 

solution to VI( F∇  ,K), then x P

*
P is a solution to the optimization problem (31). 

 
6.1 Summary and Conclusion  

We discovered in the course of this research that convexity has certain unique and 
important roles in optimization. In particular, we discovered from already established results; 
that for convex functions, a local minimum is a global minimum, that if the minimum exist it 
must be unique.  

This study also reveals the following as some of the established implications of 
convex/concave functions 

i.   Every concave or convex function must also be continuous on the interior of its domain 
ii.  Every concave or convex function must possess minimal differentiability properties. 

Among other things, every directional derivative must be well-defined at all points in the 
domain of a concave or convex function,  

iii.  The concavity or convexity of an everywhere differentiable function f can be completely 
characterized in terms of the behavior of its derivative ∇ , and the concavity or convexity 
of a CP

2
P function f can be completely characterized In terms of the behavior of its second 

derivative f2∇ . 
To-date, problems which have been formulated and studied as variational inequality 

problems include: 
i. traffic network equilibrium problems 

ii. spatial price equilibrium problems 
iii. oligopolistic market equilibrium problems 
iv. financial equilibrium problems 
v. migration equilibrium problems, as well as 

vi. environmental network problems, and 
vii. knowledge network problems. 

There are several algorithms and iterative methods for solving these variational inequality 
problems which include; 

i. General Iterative Scheme of Dafermos which induces such algorithms as: The 
Projection Method and The Relaxation Method. 

ii. The Modified Projection Method of Korpelevich which converges under less 
restrictive conditions than the general iterative scheme. 

iii. A variety of Decomposition Algorithms, both serial and parallel. 
Although, variational inequality problem encompasses the optimization problem, we also 
discovered from already established results that a solution to a convex optimization problem also 
solves the variational inequality problem. 
It is in the light of the above, we suggest that instead of spending time finding solution to a 
convex optimization problem that is complex, it will be better to transcribe such problem into a 
variational inequality problem which may be easier to solve. 
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